## Research Data Brief

Academic Productivity Series
2001 Results

J une 2002

# 2001 CPS Test Trend Review : low a Tests of Basic Skills <br> Todd Rosenkranz 

Thisisthefourth annual elementary school test trend review conducted by the Consortium on Chicago School Research. This report tracks student performance on the lowa Tests of Basic Skills(IT BS). T heIT BS has been administered in the Chicago Public Schools (CPS) since at least the mid1970s. It is one of many commercially available achievement tests designed to measure student performance in relation to averagenational performance. Thecontent on theIT BS, and on similar achievement tests, is selected to represent broad trends in curriculum across the country, rather than the specific learning standards of a particular school district or state. In recent years, CPS has used the IT BS in conjunction with its high stakes accountability system. Test results have been used to place schools on academic probation, to assign students to mandatory summer school, and in some cases, to retain students. ${ }^{1}$

In order to make valid cross-year comparisons, this update adjusts statistics reported by CPS in three key ways. First, we establish a common procedure over time for the inclusion of bilingual education students in systemwide score reporting. Second, test scores are tracked by age to account for the effect of the CPS retention policy. Lastly, the score reporting method used is the mean (average) grade equivalent (GE) score rather than the "percent at or above national norms" statistic that the CPS administration uses. ${ }^{2}$ For complete explanations of the reasons for these decisions, please refer to earlier Consortium test trend reviews wherethe "why" behind the adjustments are explained in detail. ${ }^{3}$

## Inclusion in the Elementary School Testing Program

Although almost 95 percent of CPS elementary school students in grades threethrough eight aretested yearly in math and reading, slightly fewer than three out of four students are included in public reporting of test results. There are two possible reasons why a student might be tested but her score not included in public reporting (also known as "tested but excluded"): either the child has been identified as eligible for special education services, or the child is in a bilingual education program (some students are in both). Any child
categorized as tested but excluded is not required to meet the CPS promotion standards in grades three, six, and eight. In addition, the student's score is not included in the statistics that are used to remove or place schools on probation, nor is it factored into citywide statistics. ${ }^{4}$ In contrast, all children that are "tested and included" are subject to the CPS promotion standards, their scores are used in determining whether or not a school is on probation, and they are included in the test score summaries that CPS releases to the public.

The inclusion rate for CPS elementary school students has dropped over the last nine years (see Figure 1). In spring 2001, 74.0 percent of students in third through eighth gradetook the IT BS and were included in reporting, 19.6 percent took the ITBS but were excluded from reporting, and 6.4 percent were not tested. ${ }^{5}$ This compares to an 82.7 percent inclusion rate in spring 1992. Even though enrollment in CPS elementary school target grades has increased by 14,000 students since 1992, the number of students tested and included has actually dropped by almost 5,000 . D ata suggest that some stability has been achieved over the past three years. This is mostly a result of major changes in the bilingual education policy implemented in 1998-99. Since that time, the inclusion rate has hovered around 74 percent and the percent not tested has remained at 6.4 percent.

## Effects of the CPS Bilingual Education Policy

Table A (see page 14) shows a large increase in the number of studentstested but excluded and a smaller, yet significant, decrease in thenumber of students not tested in 1999 (the number of students tested and included increased by morethan 12,000 from 1998, and the number not tested declined by morethan 5,000 ). This is due almost completely to the overhaul of the bilingual education policy in 1998-99. The intent behind the policy was to allow for better assessment of students in bilingual education programs without "penalizing" schoolsfor thelower test scores that would likely result from testing these students. The policy called for testing all students who completed two years in a CPS bilingual education program, but extending

from three to four years (post-kindergarten) the pe riod before their scores were included in aggregate totals. This change resulted in a huge increase in the number of students tested but excluded in the fourth grade with no corresponding decrease in the number not tested. In the third grade, there was a steep drop in the percent not tested and a corresponding increase in the percent tested but excluded.
Thehighest inclusion rates are in the fifth and sixth grades. In the lower grades, enrollment in bilingual education programs results in lower tested and included rates- barely two-thirds of CPS third graders aretested and included. By fifth grade, those students enrolled in a bilingual education program since the first grade pass the four-year exclusion limit. As a re sult, the inclusion rate shoots up between the fourth and fifth grades ( 70.1 percent for the fourth grade in spring 2000; 78.6 percent for fifth grade in spring 2001). After sixth grade, referrals to special education
accumulate and the percent tested and included is lower for seventh and eighth grade.
Another impact of the change in the bilingual education policy is the greater movement of children out of the program before the expiration of the four-year limit. Table B (see page 16) shows that although the number of third-grade students tested but excluded due to bilingual education has stayed fairly constant over the past three years, that number drops by almost 1,000 for fourth graders.

## Elementary School Test Score Trends

Figure 2 showsIT BS scoretrends for reading and math by age group from 1990 to 2001. In general, each age group corresponds to the grades tested for IT BS (i.e., nine year-olds are traditional third graders, ten-yearolds are traditional fourth graders, etc.). The top line on each graph represents the national norm for

Figure 2

## Trends in ITBS Grade Equivalents, by Age




Eleven Year Olds



Thirteen Year Olds


Fourteen Year Olds


# Determining Age Cohorts and Controlling for the CPS Retention Policy 

We report test scores by students' ages rather than grades to control for the impact of the retention policy adopted by the system in the 1995-96 school year. In the most recent years, classes have a larger percentage of students who were retained for one or more years, especially in the third, sixth, and eighth grades. Because retained students have been in school longer than other students in the same grade, tracking students by age allows us to compare groups of students who have received the same number of years of schooling over time.
The age calculation reflects CPS age requirements for entry into school. An age cohort is determined by the age a student turns during the school year. A nineyear-old is defined as a child who turns nine between September 1 and August 31 of the following year (aSeptember 1 birthday is the cut-off date for entry to kindergarten). The assignment of students to age cohorts has been complicated by changes in the cut-off date. In 1987 and years prior, students needed to reach their fifth birthday by December 1 in order to be eligible to start school that fall. Starting in 1988, the allowable entry birth date shifted back by one-month increments. By 1990, all students needed to reach their fifth birthday by September 1 in order to be eligible to enter kindergarten in the fall. In previous reports we accounted for this transition by adjusting the age calculation to reflect the entry date law.

Prior to the imposition of the September 1 entry cut-off date, children did not necessarily start school when the law said they could. Some with fall birthdays began school as the law allowed. O ther waited until the following year to start and were already five years old when they entered kindergarten. Differences in the way families responded to the school entry policy cre ate a problem when constructing age cohorts. If September 1 is used as the cut-off date for defining age cohorts, students with September, O ctober, or N ovember birthdays who legally enrolled in school before turning five years old would have one more year of schooling than similar students in the same age cohort who waited until they had al ready reached the age of five to enroll. O $n$ theother hand, if the cut-off date for determining age cohorts is adjusted to match the state law, students with September, O ctober, or N ovember birthdays who waited a year to enroll in school would have one fewer year of schooling than other students in their age cohort. A uniform September 1 date for constructing age cohorts would inflate the reported achievement levels of early cohorts, whilethe "state law" method would deflatethose same achievement levels.
In this report, we decided to alter the age calculation to adjust for the heterogeneity in behavior among children who were affected by theentry date change. Age calculations are reconfigured to define cohorts by years of schooling. Students with a September, O ctober, or November birthday when the entry cut-off date was $D$ ecember 1 are assigned to the age cohort of students with which they began school. This more accurately reflects that nine year-olds are children in their fourth year of schooling, ten-year-olds are children in their fifth year of schooling, etc. As a result, mean test scores for the early 1990s are slightly higher than those reported in previous updates.
the gradelevel most commonly associated with that age group. ${ }^{6}$

This test score analysis begins with spring 1990 results, the first year CPS switched from the Form 7 version of the ITBS that was used throughout the 1980s. ${ }^{7}$ Taken as a whole, trends show improvement across the decade. In both reading and math, scores are considerably higher for all age groups than they were at the beginning of the 1990s. There are indications that trends have flattened in the past few years, however. Reading and math scores for 2001 for students aged nine through eleven are less than 0.1 (one month in the GE metric) higher than in 1998. M ath scores for ages twelve and thirteen follow the same pattern. O nly the trends for fourteen-year-olds have continued to show robust improvement through 2001. Looking specifically at 2001 math scores, all six age cohorts saw a slight decline in math scores to the magnitude of less than one month. Even so, 2001 scores are still appreciably higher than most of the scores in the years preceding 2000.

Figure 3 breaks out IT BS results by student race/ ethnicity. The achievement gap between children of different races has received much national attention and many strategies have been implemented to address the issue and narrow thegap. ${ }^{8}$ In CPS, disaggregated scores by race show the following:

- Asian and whitestudents haveaverageIT BS scores that are well above the average scores of AfricanAmerican and Latino students. For all ages in both reading and math, the average scores of both Asian
and white students reached the national norm by 1995, and the second half of the 1990s saw those scores rise well above the national norm.
- The average reading scores for Asian and white students arevery similar, but the averagemath score for Asian students is much higher than the average for white students.
- Test scoretrends for Latino studentsin both reading and math for all ages show significant improvement, especially since the mid-1990s.
- Test score trends for African-American students improved for most of the 1990s, but trends in reading have been flat since 1998 for all ages except fourteen-year-olds. Since 1998, trends in math scores for African Americans are flat for nineand ten-year-olds, modestly up for eleven- and twelve-year-olds, and up for thirteen- and four-teen-year-olds.
- Thetest scoregap between African-American students and students of other ethnic groups in CPS has widened over the last 10 years. Although the average scores for African Americans hasimproved, the average scores for Asian, white, and Latino students have improved at a faster rate.
- Nine-year-old Latino students exceeded the national norm in math for the first time in 2000 and continued to exceed it in 2001 despite a decline in


## Decline in 2001 Math Scores

Thedecline in 2001 math scores is also reflected in the standard reporting scheme used by CPS, as the percent of students testing at or above national norms in math fell from 46.4 percent in 2000 to 43.6 percent in 2001. We re-analyzed these scores using a different metric, an equated Rasch score called a logit. The Rasch score accounts for both test form and level differences. The results of the Rasch analysis were the same as the GE trends in 2001 with one exception - the scores for fourteen-year-olds did not drop in Rasch. This suggests that the drop in the GE trends reflects an actual drop in learning and is not the product of the test form progression.
the average score. A nine year-old who started kindergarten as a five year-old would be in her third year of post-kindergarten education, so this average score is for all Latino students who were never in the bilingual education program, or who completed the bilingual education program in less than three years.

- Theaveragetest scores of Latino studentshaveimproved to the point where there is now a test score gap between Latino and African-American students. At the start of the 1990s, the reading scores for these two populations were quite similar and the average math score for Latino students was between one to two months higher than that for African-American students. By 2001, the average reading scorefor Latino studentswas approximately two to three months higher, and the average math score three to four months higher, than the average score for African-American students.


## Trends in Learning Gains Over Time

Another way to measure student performance is to examine trends in the yearly gain in students' test scores. As argued in the C onsortium's 1998 study of test score trends, gain scores best reflect education improvement because they measure the amount of learning that takes place over a year of instruction. ${ }^{9} \mathrm{~A}$ student's gain is her score from time point $B$ minus her score from time point A. For example, the 2001 gain for any student is her 2001 score less her 2000 score. Individual gain scores arethen aggregated across grade cohorts to determine the average gain for each grade. ${ }^{10} \mathrm{~T}$ his average gain score can be used as a measure of productivity. If the gains increase, productivity is increasing (that is, students are learning more). $G$ ains that are not increasing indicate stagnant or de clining productivity. Figure4 showsgain trendsin reading and math from 1994 to 2001. M ath gainsfor 2001 are significantly lower than gains from the previous


Figure 3

## Average ITBS Results by Race/Ethnicity

Nine Year Olds-Reading


Ten Year Olds-Reading


Eleven Year Olds-Reading


Nine Year Olds-Math


Ten Year Olds-Math


Eleven Year Olds-Math


## Average ITBS Results by Race/Ethnicity



Note: The bold-faced Grade Equivalent (GE) on the left axis indicates the national average GE for that grade level. See tables C and D on pages 18 and 19 for more detail.
years for most grades. Reading gainsfor 2001 present a mixed picture - gains in grades three and six are among the highest for those grades, but gains in the other grades are lower than in previous years.

Any anal ysis of test score trends is complicated by the fact that test forms change yearly. O ne cannot be certain whether differences in student performance aredueto actual changes in the learning that occurred, or to the difficulty of a specific test form or test level. For example, eighth-grademath gains suggest that test forms heavily influence student gains in this grade: the two largest gains (1997 and 1999) both happen to have the sameform progression (Form L to Form M ); and the three lowest gains (1994, 1996, and 2001) all share the same form progression as well (Form K to Form L). This pattern is consistent with test form effects.

O ne way to control for these effects is to compare only the same form-to-form transitions. In doing so, we naturally account for any form differences in the test and can bemore certain that estimated differences generally reflect differences in learning. G ainsfor 1997 and 1999 share the progression of Form L (in 1996 and 1998) to Form M (in 1997 and 1999); and gains for 1994, 1996, and 2001 share the progression of

Form $K$ to Form $L$. The $L$ to $M$ transitions are the white bars in Figure 4 and the $K$ to $L$ transitions are the black bars. As noted in our previous test trend reviews, gains for 1999 are almost universally lower than those for 1997 in both reading and math. Resultsfor 2001 aremixed. M ath gainsfor 2001 arelower than 1996 gains for all grades except third. Reading gains for 2001 in grades three and seven are similar to gains for 1996, but they are higher in the sixth and eighth grades and lower in fourth and fifth grades.

## Concluding Observations

The ITBS trend results reported here are generally consistent with patterns noted in the Consortium's 1999 and 2000 test trend reviews. Beginning with the 1999 report, we raised a concern about possible stagnation in productivity improvements in CPS elementary schools. D ata for 2001 allow us to more firmly conclude that this is in fact the case. W hile the gain scores indicate that CPS made improvements in student learning throughout much of the 1990s, theimprovements stalled after 1997. Thereisno evidence of any significant productivity growth in elementary schools since that time.

## Trends in Reading Gains in GEs



Trends in Math Gains in GEs


## Tables

Table A
CPS Spring Enrollment by Test Inclusion Category
Grades three to eight and non-graded special education

|  | Total Enrollment | Percent Tested and Included | Tested and Included | Percent <br> Tested but <br> Excluded | Tested but Excluded | Not Tested | Percent <br> Not <br> Tested |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 206,740 | 152,990 | 74.0\% | 40,528 | 19.6\% | 13,222 | 6.4\% |
| 2000 | 203,150 | 151,190 | 74.4\% | 38,890 | 19.1\% | 13,070 | 6.4\% |
| 1999 | 200,406 | 148,649 | 74.2\% | 38,935 | 19.4\% | 12,822 | 6.4\% |
| 1998 | 196,624 | 151,551 | 77.1\% | 26,838 | 13.6\% | 18,235 | 9.3\% |
| 1997 | 192,405 | 147,775 | 76.8\% | 24,304 | 12.6\% | 20,326 | 10.6\% |
| 1996 | 190,067 | 150,157 | 79.0\% | 18,698 | 9.8\% | 21,212 | 11.2\% |
| 1995 | 190,810 | 151,527 | 79.4\% | 17,549 | 9.2\% | 21,734 | 11.4\% |
| 1994 | 192,747 | 153,833 | 79.8\% | 16,718 | 8.7\% | 22,196 | 11.5\% |
| 1993 | 194,874 | 159,460 | 81.8\% | 15,933 | 8.2\% | 19,481 | 10.0\% |
| 1992 | 192,223 | 158,880 | 82.7\% | 15,624 | 8.1\% | 17,719 | 9.2\% |
|  |  |  | Percent |  | Percent |  | Percent |
|  | Total | Tested and | Tested and | Tested but | Tested but | Not | Not |
| Grade 3 | Enrollment | Included | Included | Excluded | Excluded | Tested | Tested |
| 2001 | 39,951 | 26,583 | 66.5\% | 10,610 | 26.6\% | 2,758 | 6.9\% |
| 2000 | 40,779 | 27,788 | 68.1\% | 10,247 | 25.1\% | 2,744 | 6.7\% |
| 1999 | 41,083 | 27,994 | 68.1\% | 10,435 | 25.4\% | 2,654 | 6.5\% |
| 1998 | 39,467 | 27,739 | 70.3\% | 5,318 | 13.5\% | 6,410 | 16.2\% |
| 1997 | 34,823 | 24,113 | 69.2\% | 3,965 | 11.4\% | 6,745 | 19.4\% |
| 1996 | 33,075 | 24,419 | 73.8\% | 2,135 | 6.5\% | 6,521 | 19.7\% |
| 1995 | 32,673 | 24,533 | 75.1\% | 1,906 | 5.8\% | 6,234 | 19.1\% |
| 1994 | 32,982 | 25,179 | 76.3\% | 1,838 | 5.6\% | 5,965 | 18.1\% |
| 1993 | 33,067 | 26,342 | 79.7\% | 1,696 | 5.1\% | 5,029 | 15.2\% |
| 1992 | 30,808 | 24,729 | 80.3\% | 1,539 | 5.0\% | 4,540 | 14.7\% |
|  |  |  | Percent |  | Percent |  | Percent |
| Grade 4 | Enrollment | Tested and Included | Tested and Included | Tested but Excluded | Tested but Excluded | Not Tested | Not Tested |
| 2001 | 36,990 | 26,455 | 71.5\% | 8,220 | 22.2\% | 2,315 | 6.3\% |
| 2000 | 36,220 | 25,390 | 70.1\% | 8,475 | 23.4\% | 2,355 | 6.5\% |
| 1999 | 34,669 | 23,785 | 68.6\% | 8,832 | 25.5\% | 2,052 | 5.9\% |
| 1998 | 29,671 | 23,999 | 80.9\% | 3,461 | 11.7\% | 2,211 | 7.5\% |
| 1997 | 32,367 | 26,168 | 80.8\% | 3,496 | 10.8\% | 2,703 | 8.4\% |
| 1996 | 31,969 | 26,481 | 82.8\% | 2,673 | 8.4\% | 2,815 | 8.8\% |
| 1995 | 32,591 | 26,987 | 82.8\% | 2,476 | 7.6\% | 3,128 | 9.6\% |
| 1994 | 32,171 | 26,677 | 82.9\% | 2,326 | 7.2\% | 3,168 | 9.8\% |
| 1993 | 30,633 | 25,925 | 84.6\% | 2,090 | 6.8\% | 2,618 | 8.5\% |
| 1992 | 31,464 | 27,021 | 85.9\% | 2,014 | 6.4\% | 2,429 | 7.7\% |
|  |  |  | Percent |  | Percent |  | Percent |
|  | Total | Tested and | Tested and | Tested but | Tested but | Not | Not |
| Grade 5 | Enrollment | Included | Included | Excluded | Excluded | Tested | Tested |
| 2001 | 35,613 | 28,006 | 78.6\% | 5,463 | 15.3\% | 2,144 | 6.0\% |
| 2000 | 33,856 | 27,072 | 80.0\% | 4,928 | 14.6\% | 1,856 | 5.5\% |
| 1999 | 30,116 | 23,736 | 78.8\% | 4,545 | 15.1\% | 1,835 | 6.1\% |
| 1998 | 31,723 | 25,657 | 80.9\% | 4,055 | 12.8\% | 2,011 | 6.3\% |
| 1997 | 31,361 | 25,286 | 80.6\% | 3,786 | 12.1\% | 2,289 | 7.3\% |
| 1996 | 31,940 | 26,366 | 82.5\% | 3,019 | 9.5\% | 2,555 | 8.0\% |
| 1995 | 31,539 | 26,112 | 82.8\% | 2,751 | 8.7\% | 2,676 | 8.5\% |
| 1994 | 30,023 | 24,732 | 82.4\% | 2,551 | 8.5\% | 2,740 | 9.1\% |
| 1993 | 31,175 | 26,632 | 85.4\% | 2,338 | 7.5\% | 2,205 | 7.1\% |
| 1992 | 31,690 | 27,226 | 85.9\% | 2,320 | 7.3\% | 2,144 | 6.8\% |


| Grade 6 | Total Enrollment | Tested and Included | Percent Tested and Included | Tested but Excluded | Percent Tested but Excluded | Not <br> Tested | Percent Not Tested |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 2001 | 34,957 | 27,444 | 78.5\% | 5,521 | 15.8\% | 1,992 | 5.7\% |
| 2000 | 31,335 | 24,625 | 78.6\% | 4,739 | 15.1\% | 1,971 | 6.3\% |
| 1999 | 33,344 | 26,228 | 78.7\% | 5,190 | 15.6\% | 1,926 | 5.8\% |
| 1998 | 33,462 | 27,004 | 80.7\% | 4,505 | 13.5\% | 1,953 | 5.8\% |
| 1997 | 31,513 | 25,305 | 80.3\% | 4,031 | 12.8\% | 2,177 | 6.9\% |
| 1996 | 30,928 | 25,359 | 82.0\% | 3,138 | 10.1\% | 2,431 | 7.9\% |
| 1995 | 29,699 | 24,254 | 81.7\% | 2,914 | 9.8\% | 2,531 | 8.5\% |
| 1994 | 30,732 | 25,363 | 82.5\% | 2,806 | 9.1\% | 2,563 | 8.3\% |
| 1993 | 31,372 | 26,704 | 85.1\% | 2,519 | 8.0\% | 2,149 | 6.9\% |
| 1992 | 32,879 | 28,425 | 86.5\% | 2,440 | 7.4\% | 2,014 | 6.1\% |
|  |  |  | Percent |  | Percent |  | Percent |
|  | Total | Tested and | Tested and | Tested but | Tested but | Not | Not |
| Grade 7 | Enrollment | Included | Included | Excluded | Excluded | Tested | Tested |
| 2001 | 28,670 | 21,701 | 75.7\% | 4,936 | 17.2\% | 2,033 | 7.1\% |
| 2000 | 30,258 | 23,343 | 77.1\% | 5,040 | 16.7\% | 1,875 | 6.2\% |
| 1999 | 30,702 | 23,715 | 77.2\% | 5,009 | 16.3\% | 1,978 | 6.4\% |
| 1998 | 28,494 | 22,551 | 79.1\% | 4,074 | 14.3\% | 1,869 | 6.6\% |
| 1997 | 30,210 | 24,098 | 79.8\% | 3,876 | 12.8\% | 2,236 | 7.4\% |
| 1996 | 29,040 | 23,526 | 81.0\% | 3,087 | 10.6\% | 2,427 | 8.4\% |
| 1995 | 29,874 | 24,488 | 82.0\% | 2,933 | 9.8\% | 2,453 | 8.2\% |
| 1994 | 30,515 | 25,053 | 82.1\% | 2,770 | 9.1\% | 2,692 | 8.8\% |
| 1993 | 32,212 | 27,514 | 85.4\% | 2,430 | 7.5\% | 2,268 | 7.0\% |
| 1992 | 30,841 | 26,612 | 86.3\% | 2,246 | 7.3\% | 1,983 | 6.4\% |
|  |  |  | Percent |  | Percent |  | Percent |
|  | Total | Tested and | Tested and | Tested but | Tested but | Not | Not |
| Grade 8 | Enrollment | Included | Included | Excluded | Excluded | Tested | Tested |
| 2001 | 30,558 | 22,801 | 74.6\% | 5,778 | 18.9\% | 1,979 | 6.5\% |
| 2000 | 30,624 | 22,969 | 75.0\% | 5,439 | 17.8\% | 2,216 | 7.2\% |
| 1999 | 30,340 | 23,189 | 76.4\% | 4,891 | 16.1\% | 2,260 | 7.4\% |
| 1998 | 31,267 | 24,585 | 78.6\% | 4,335 | 13.9\% | 2,347 | 7.5\% |
| 1997 | 29,395 | 22,782 | 77.5\% | 3,851 | 13.1\% | 2,762 | 9.4\% |
| 1996 | 30,270 | 23,979 | 79.2\% | 3,238 | 10.7\% | 3,053 | 10.1\% |
| 1995 | 31,485 | 25,101 | 79.7\% | 3,086 | 9.8\% | 3,298 | 10.5\% |
| 1994 | 33,042 | 26,773 | 81.0\% | 2,760 | 8.4\% | 3,509 | 10.6\% |
| 1993 | 31,371 | 26,226 | 83.6\% | 2,248 | 7.2\% | 2,897 | 9.2\% |
| 1992 | 29,159 | 24,748 | 84.9\% | 2,178 | 7.5\% | 2,233 | 7.7\% |

(Non-graded students with disabilities in the same age range as students in grades three through eight)

| Grade 20 | Total Enrollment | Tested and Included | Percent Tested and Included | Tested but Excluded | Percent <br> Tested but <br> Excluded | Not Tested | Percent <br> Not <br> Tested |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 1 |  | 0.0\% |  | 0.0\% | 1 | 100.0\% |
| 2000 | 78 | 3 | 3.8\% | 22 | 28.2\% | 53 | 67.9\% |
| 1999 | 152 | 2 | 1.3\% | 33 | 21.7\% | 117 | 77.0\% |
| 1998 | 2,540 | 16 | 0.6\% | 1,090 | 42.9\% | 1,434 | 56.5\% |
| 1997 | 2,736 | 23 | 0.8\% | 1,299 | 47.5\% | 1,414 | 51.7\% |
| 1996 | 2,845 | 27 | 0.9\% | 1,408 | 49.5\% | 1,410 | 49.6\% |
| 1995 | 2,949 | 52 | 1.8\% | 1,483 | 50.3\% | 1,414 | 47.9\% |
| 1994 | 3,282 | 56 | 1.7\% | 1,667 | 50.8\% | 1,559 | 47.5\% |
| 1993 | 5,044 | 117 | 2.3\% | 2,612 | 51.8\% | 2,315 | 45.9\% |
| 1992 | 5,382 | 119 | 2.2\% | 2,887 | 53.6\% | 2,376 | 44.1\% |

Table B

## Reasons for Exclusion from Reporting

Grades three to eight and non-graded special education

|  | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| :---: | :---: | :---: | :---: | :---: |
| 2001 | 40,528 | 22,906 | 14,497 | 3,125 |
| 2000 | 38,890 | 22,073 | 14,018 | 2,799 |
| 1999 | 38,935 | 20,503 | 15,358 | 3,074 |
| 1998 | 26,838 | 19,768 | 4,451 | 2,619 |
| 1997 | 24,304 | 18,472 | 3,583 | 2,249 |
| Grade 3 | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| 2001 | 10,610 | 2,676 | 7,283 | 651 |
| 2000 | 10,247 | 2,761 | 6,994 | 492 |
| 1999 | 10,435 | 2,849 | 7,114 | 472 |
| 1998 | 5,318 | 2,529 | 2,485 | 304 |
| 1997 | 3,965 | 2,118 | 1,598 | 249 |
| Grade 4 | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| 2001 | 8,220 | 3,411 | 4,146 | 663 |
| 2000 | 8,475 | 3,569 | 4,350 | 556 |
| 1999 | 8,832 | 3,175 | 5,118 | 539 |
| 1998 | 3,461 | 2,485 | 559 | 417 |
| 1997 | 3,496 | 2,621 | 499 | 376 |
| Grade 5 | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| 2001 | 5,463 | 3,995 | 901 | 567 |
| 2000 | 4,928 | 3,582 | 836 | 510 |
| 1999 | 4,545 | 3,051 | 969 | 525 |
| 1998 | 4,055 | 3,162 | 416 | 477 |
| 1997 | 3,786 | 2,942 | 423 | 421 |
| Grade 6 | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| 2001 | 5,521 | 4,301 | 747 | 473 |
| 2000 | 4,739 | 3,674 | 619 | 446 |
| 1999 | 5,190 | 3,820 | 807 | 563 |
| 1998 | 4,505 | 3,619 | 371 | 515 |
| 1997 | 4,031 | 3,260 | 378 | 393 |
| Grade 7 | Total, Tested but Excluded | Special Education | Bilingual Education | Both SpecEd and BilingEd |
| 2001 | 4,936 | 3,753 | 805 | 378 |
| 2000 | 5,040 | 4,094 | 574 | 372 |
| 1999 | 5,009 | 3,814 | 667 | 528 |
| 1998 | 4,074 | 3,323 | 339 | 412 |
| 1997 | 3,876 | 3,145 | 332 | 399 |


| Grade 8 | Total, Tested <br> but Excluded | Special <br> Education | Bilingual <br> Education | Both SpecEd <br> and BilingEd |
| :--- | :--- | :--- | :--- | :--- |
| 2001 | 5,778 | 4,770 | 615 | 393 |
| 2000 | 5,439 | 4,371 | 645 | 423 |
| 1999 | 4,891 | 3,761 | 683 | 447 |
| 1998 | 4,335 | 3,603 | 281 | 451 |
| 1997 | 3,851 | 3,172 | 353 | 326 |

(Non-graded students with disabilities in the same age range as students in grades three through eight)

| Grade 20 | Total, Tested <br> but Excluded | Special <br> Education | Bilingual <br> Education | Both SpecEd <br> and BilingEd |
| :--- | :--- | :--- | :--- | ---: |
| 2001 |  |  |  |  |
| 2000 | 22 | 22 | 0 | 0 |
| 1999 | 33 | 33 | 0 | 0 |
| 1998 | 1,090 | 1,047 | 0 | 43 |
| 1997 | 1,299 | 1,214 | 0 | 85 |

Table C
Mean ITBS Reading Scores by Grade Equivalent

|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 3.63 | 3.65 | 3.76 | 3.70 | 3.82 | 3.72 | 3.86 | 3.87 | 4.15 | 3.97 | 4.00 | 4.22 |
| African-American | 2.76 | 2.82 | 2.85 | 2.75 | 2.80 | 2.75 | 2.82 | 2.88 | 2.98 | 3.00 | 2.97 | 3.00 |
| Asian | 3.73 | 3.65 | 3.94 | 3.84 | 3.89 | 3.82 | 3.99 | 3.98 | 4.42 | 4.14 | 4.27 | 4.31 |
| Latino | 2.89 | 2.95 | 3.02 | 2.99 | 3.08 | 3.03 | 3.19 | 3.24 | 3.41 | 3.32 | 3.37 | 3.48 |
| All | 2.92 | 2.97 | 3.03 | 2.95 | 3.01 | 2.96 | 3.04 | 3.08 | 3.21 | 3.18 | 3.17 | 3.23 |
| 10 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 4.53 | 4.52 | 4.64 | 4.79 | 4.80 | 4.85 | 4.91 | 5.08 | 5.05 | 5.23 | 5.15 | 5.15 |
| African-American | 3.61 | 3.55 | 3.72 | 3.78 | 3.69 | 3.79 | 3.78 | 3.94 | 3.82 | 4.00 | 3.97 | 3.92 |
| Asian | 4.74 | 4.49 | 4.73 | 4.90 | 4.88 | 4.94 | 4.93 | 5.10 | 5.14 | 5.26 | 5.17 | 5.18 |
| Latino | 3.63 | 3.58 | 3.76 | 3.92 | 3.86 | 4.00 | 3.90 | 4.08 | 4.10 | 4.23 | 4.28 | 4.20 |
| All | 3.75 | 3.70 | 3.86 | 3.97 | 3.91 | 4.00 | 3.97 | 4.14 | 4.07 | 4.22 | 4.21 | 4.15 |
| 11 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 5.55 | 5.46 | 5.66 | 5.80 | 5.88 | 5.92 | 6.06 | 6.08 | 6.20 | 6.12 | 6.11 | 6.28 |
| African-American | 4.59 | 4.39 | 4.59 | 4.76 | 4.74 | 4.73 | 4.85 | 4.98 | 4.93 | 4.96 | 4.94 | 4.97 |
| Asian | 5.74 | 5.61 | 5.63 | 5.78 | 5.99 | 6.00 | 6.08 | 6.10 | 6.32 | 6.20 | 6.09 | 6.26 |
| Latino | 4.60 | 4.44 | 4.64 | 4.87 | 4.80 | 4.91 | 5.00 | 5.05 | 5.14 | 5.13 | 5.17 | 5.19 |
| All | 4.73 | 4.56 | 4.76 | 4.94 | 4.93 | 4.95 | 5.06 | 5.15 | 5.17 | 5.17 | 5.16 | 5.20 |
| 12 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.52 | 6.40 | 6.48 | 6.80 | 6.82 | 6.85 | 7.12 | 7.03 | 7.31 | 7.13 | 7.15 | 7.37 |
| African-American | 5.50 | 5.35 | 5.35 | 5.58 | 5.60 | 5.53 | 5.70 | 5.78 | 5.95 | 5.91 | 5.83 | 5.96 |
| Asian | 6.72 | 6.53 | 6.63 | 6.79 | 6.79 | 6.95 | 7.27 | 7.13 | 7.33 | 7.22 | 7.14 | 7.34 |
| Latino | 5.53 | 5.34 | 5.41 | 5.70 | 5.66 | 5.70 | 5.86 | 5.92 | 6.12 | 6.04 | 6.06 | 6.22 |
| All | 5.66 | 5.50 | 5.53 | 5.79 | 5.79 | 5.77 | 5.95 | 6.00 | 6.20 | 6.12 | 6.08 | 6.22 |
| 13 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 7.80 | 7.55 | 7.59 | 8.06 | 7.91 | 8.13 | 8.07 | 8.32 | 8.30 | 8.41 | 8.51 | 8.44 |
| African-American | 6.64 | 6.44 | 6.29 | 6.66 | 6.46 | 6.66 | 6.60 | 6.82 | 6.84 | 7.00 | 7.01 | 6.90 |
| Asian | 7.92 | 7.65 | 7.53 | 8.03 | 7.79 | 8.15 | 8.10 | 8.38 | 8.30 | 8.42 | 8.60 | 8.33 |
| Latino | 6.71 | 6.39 | 6.33 | 6.82 | 6.54 | 6.83 | 6.66 | 7.03 | 6.98 | 7.23 | 7.30 | 7.12 |
| All | 6.84 | 6.59 | 6.49 | 6.91 | 6.70 | 6.92 | 6.83 | 7.10 | 7.09 | 7.27 | 7.31 | 7.17 |
| 14 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 8.79 | 8.57 | 8.43 | 8.79 | 8.85 | 8.94 | 9.16 | 9.10 | 9.45 | 9.26 | 9.44 | 9.53 |
| African-American | 7.56 | 7.37 | 7.17 | 7.42 | 7.36 | 7.35 | 7.60 | 7.69 | 7.82 | 7.86 | 7.96 | 8.01 |
| Asian | 8.80 | 8.68 | 8.26 | 8.64 | 8.72 | 8.85 | 9.09 | 9.13 | 9.46 | 9.33 | 9.26 | 9.56 |
| Latino | 7.69 | 7.35 | 7.19 | 7.53 | 7.37 | 7.56 | 7.63 | 7.74 | 7.91 | 8.05 | 8.18 | 8.17 |
| All | 7.78 | 7.55 | 7.36 | 7.64 | 7.58 | 7.64 | 7.83 | 7.91 | 8.08 | 8.12 | 8.24 | 8.27 |

[^0]Mean ITBS Math Scores by Grade Equivalent

|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 3.73 | 3.82 | 3.78 | 4.03 | 3.99 | 4.04 | 4.08 | 4.21 | 4.30 | 4.30 | 4.41 | 4.37 |
| African-American | 3.11 | 3.14 | 3.06 | 3.21 | 3.18 | 3.19 | 3.25 | 3.30 | 3.42 | 3.42 | 3.48 | 3.41 |
| Asian | 4.12 | 4.07 | 4.13 | 4.40 | 4.36 | 4.39 | 4.47 | 4.62 | 4.78 | 4.73 | 4.79 | 4.66 |
| Latino | 3.26 | 3.30 | 3.24 | 3.47 | 3.46 | 3.48 | 3.59 | 3.67 | 3.79 | 3.77 | 3.90 | 3.84 |
| All | 3.25 | 3.28 | 3.22 | 3.41 | 3.37 | 3.39 | 3.45 | 3.50 | 3.61 | 3.59 | 3.68 | 3.60 |
| 10 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 4.68 | 4.74 | 4.72 | 4.87 | 4.89 | 4.90 | 4.98 | 5.20 | 5.17 | 5.36 | 5.29 | 5.24 |
| African-American | 3.93 | 3.91 | 3.86 | 4.01 | 3.93 | 3.98 | 4.01 | 4.17 | 4.19 | 4.30 | 4.32 | 4.18 |
| Asian | 5.22 | 5.05 | 5.07 | 5.27 | 5.26 | 5.35 | 5.32 | 5.58 | 5.49 | 5.75 | 5.64 | 5.56 |
| Latino | 4.07 | 4.06 | 4.01 | 4.20 | 4.21 | 4.22 | 4.24 | 4.46 | 4.49 | 4.63 | 4.64 | 4.57 |
| All | 4.09 | 4.08 | 4.03 | 4.20 | 4.16 | 4.19 | 4.22 | 4.41 | 4.41 | 4.55 | 4.55 | 4.44 |
| 11 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 5.63 | 5.68 | 5.78 | 5.86 | 5.80 | 5.95 | 5.93 | 6.14 | 6.10 | 6.29 | 6.29 | 6.24 |
| African-American | 4.79 | 4.73 | 4.80 | 4.85 | 4.83 | 4.82 | 4.93 | 5.04 | 5.08 | 5.15 | 5.23 | 5.15 |
| Asian | 6.17 | 6.26 | 6.13 | 6.25 | 6.21 | 6.39 | 6.33 | 6.48 | 6.49 | 6.65 | 6.65 | 6.56 |
| Latino | 4.95 | 4.94 | 4.99 | 5.08 | 5.05 | 5.12 | 5.20 | 5.33 | 5.39 | 5.49 | 5.53 | 5.48 |
| All | 4.96 | 4.94 | 5.00 | 5.07 | 5.05 | 5.08 | 5.16 | 5.29 | 5.33 | 5.42 | 5.47 | 5.40 |
| 12 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.66 | 6.67 | 6.72 | 6.98 | 6.90 | 6.99 | 7.10 | 7.28 | 7.31 | 7.37 | 7.50 | 7.46 |
| African-American | 5.75 | 5.70 | 5.73 | 5.88 | 5.78 | 5.85 | 5.86 | 6.09 | 6.16 | 6.25 | 6.32 | 6.23 |
| Asian | 7.22 | 7.19 | 7.27 | 7.42 | 7.39 | 7.59 | 7.56 | 7.71 | 7.72 | 7.78 | 7.94 | 7.86 |
| Latino | 5.93 | 5.87 | 5.92 | 6.14 | 6.03 | 6.14 | 6.22 | 6.43 | 6.48 | 6.58 | 6.66 | 6.64 |
| All | 5.95 | 5.90 | 5.93 | 6.13 | 6.03 | 6.11 | 6.16 | 6.37 | 6.43 | 6.52 | 6.60 | 6.53 |
| 13 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 7.67 | 7.61 | 7.68 | 7.78 | 7.74 | 7.87 | 7.85 | 8.15 | 8.16 | 8.26 | 8.31 | 8.35 |
| African-American | 6.61 | 6.54 | 6.64 | 6.62 | 6.49 | 6.60 | 6.57 | 6.79 | 6.89 | 7.06 | 7.14 | 7.02 |
| Asian | 8.29 | 8.15 | 8.28 | 8.28 | 8.17 | 8.43 | 8.34 | 8.62 | 8.64 | 8.74 | 8.79 | 8.75 |
| Latino | 6.84 | 6.76 | 6.78 | 6.92 | 6.80 | 6.88 | 6.87 | 7.12 | 7.24 | 7.35 | 7.44 | 7.42 |
| All | 6.84 | 6.77 | 6.84 | 6.89 | 6.78 | 6.88 | 6.86 | 7.10 | 7.19 | 7.34 | 7.41 | 7.33 |
| 14 Year Olds |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 8.54 | 8.41 | 8.48 | 8.61 | 8.54 | 8.73 | 8.78 | 9.02 | 9.06 | 9.24 | 9.27 | 9.17 |
| African-American | 7.47 | 7.24 | 7.38 | 7.43 | 7.39 | 7.41 | 7.52 | 7.85 | 7.77 | 8.04 | 8.09 | 8.02 |
| Asian | 9.18 | 9.03 | 8.96 | 9.16 | 8.99 | 9.14 | 9.21 | 9.49 | 9.52 | 9.70 | 9.62 | 9.61 |
| Latino | 7.70 | 7.54 | 7.54 | 7.69 | 7.64 | 7.72 | 7.78 | 8.07 | 8.10 | 8.32 | 8.36 | 8.34 |
| All | 7.71 | 7.51 | 7.60 | 7.69 | 7.64 | 7.71 | 7.79 | 8.10 | 8.07 | 8.32 | 8.36 | 8.30 |

Note: Scores in 1995, 1996, 1999, 2000, and 2001 are adjusted to simulate the bilingual education inclusion rules of 1997 and 1998. In 1999, 2000, and 2001, students in their fourth year of bilingual education have been added back into the totals. In 1995 and 1996, students with fewer than three years of bilingual education have been removed.

Table E
Reading Gain Scores

|  | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.72 | 0.69 | 0.84 | 0.80 | 0.84 | 0.78 | 0.77 | 0.84 |
| Grade 4 | 1.02 | 1.06 | 1.09 | 1.16 | 1.07 | 1.11 | 1.14 | 1.06 |
| Grade 5 | 0.97 | 1.06 | 1.06 | 1.19 | 1.04 | 1.12 | 0.95 | 0.99 |
| Grade 6 | 0.82 | 0.78 | 0.98 | 0.88 | 1.02 | 0.87 | 0.84 | 1.04 |
| Grade 7 | 0.94 | 1.16 | 1.08 | 1.15 | 1.10 | 1.09 | 1.28 | 1.08 |
| Grade 8 | 0.63 | 0.91 | 0.92 | 1.07 | 0.98 | 1.06 | 0.97 | 0.95 |

Math Gain Scores

|  | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.68 | 0.68 | 0.81 | 0.81 | 0.85 | 0.83 | 0.94 | 0.86 |
| Grade 4 | 0.78 | 0.86 | 0.87 | 1.00 | 0.94 | 0.95 | 0.97 | 0.76 |
| Grade 5 | 0.86 | 0.93 | 0.97 | 1.05 | 0.91 | 1.02 | 0.93 | 0.87 |
| Grade 6 | 0.96 | 1.07 | 1.08 | 1.21 | 1.13 | 1.17 | 1.23 | 1.05 |
| Grade 7 | 0.57 | 0.82 | 0.68 | 0.88 | 0.75 | 0.83 | 0.84 | 0.63 |
| Grade 8 | 0.78 | 0.96 | 0.95 | 1.29 | 1.00 | 1.19 | 1.10 | 0.94 |

## Endnotes

${ }^{1}$ Test scores are approximations of student achievement, not perfect indicators. Every test score includes some random error. The more reliable the test, the smaller the error. M easurement error can never be reduced to zero, however. Test scores can be responsive to additional factors, such as student attentiveness on the day of the test, a student's background knowledge of the topics being tested, and even luck. Another potential influence is the repeated use of ITBS test forms. Teachers may become familiar with the content of specific tests and, unconsciously or otherwise, teach to specific items on the test.
${ }^{2}$ In the GE metric, scores are reported as a number to the tenth of a decimal (i.e. 5.3, 6.8 , or 7.2 ). The number prior to the decimal refers to the grade and the number after the decimal refers to the month. In this way, 5.3 is the third month of the fifth grade, 6.8 is the eighth month of the sixth grade, and 7.2 is the second month of the seventh grade. The national norm is the eighth month of the grade in which the test is given because that is when the IT BS is administered (the third grade norm is 3.8 , the fourth grade norm is 4.8 , etc.). The phrases "at or above national norms" and "at or above grade level" can be used interchangeably. By definition, the national norm is the 50 th percentile of a national sample. In other publications we describe the limitation of using grade equivalent scores. H ere, however, we have chosen to analyze CPS data in the manner in which it is publicly reported.
${ }^{3}$ Easton et al. (1998); Easton et al. (2000); Easton, Rosenkranz, and Bryk (2001).
${ }^{4}$ For most students with disabilities, their Individualized Education Program (IEP) determines the cut-off score used for promotion. These scores are lower than the cut-off scores used for students who are tested and included.
${ }^{5}$ The non-graded special education section in Table A changed slightly from the numbers reported in previous test trend reports due to a correction in the filtering procedure used to remove students who are not enrolled full-time in a CPS school (being either enrolled and receiving special education services from CPS, or being evaluated for special education by CPS but not enrolled in a Chicago public school). The effect of the narrowing of this filter reduced the non-graded special education numbers by between 600 to 800 students each year.
${ }^{6}$ T he norm is the 50th percentile score for each grade from a 1988 nationally normed sample.
${ }^{7}$ Previous test trend reviews started with spring 1992 results.
${ }^{8}$ Jencks and Phillips (1998).
${ }^{9}$ Bryk et al. (1998).
${ }^{10}$ Test score gains are reported by grade rather than by age to control for the form/level differences contained within the scoring of the IT BS in the grade equivalent metric.

## References

Bryk, Anthony S., Yeow M eng T hum, John Q. Easton, Stuart Luppescu. (1998). Academic Productivity of Chicago Public Schools. Chicago: C onsortium on Chicago School Research.

Easton, John Q., Todd Rosenkranz, Anthony S. Bryk. (2001). Annual CPS test trend review, 2000. Research data brief of the Academic Productivity Series. Chicago: C onsortium on Chicago School Research.

Easton, John Q., Todd Rosenkranz, Anthony S. Bryk, Brian A. Jacob, Stuart Luppescu, and M elissa Roderick. (2000). Annual CPS test trend review, 1999. Research data brief of the Academic Productivity Series. Chicago: C onsortium on Chicago School Research.

Easton, John Q., Brian Jacob, Stuart Luppescu, and M elissa Roderick. (1998). Adjusting Citywide IT BS Scores for Student Retention in Grades Three, Six, and Eight. Chicago: C onsortium on Chicago School Research.

Jencks, Christopher and M erideth Phillips (Eds.). (1998). The Black-W hiteTest ScoreGap. Washington, DC: Brookings Institution Press.

This is the fourth in a series of research data briefs designed to provide new data on a particular issue. As the name suggests, this is a short report focusing on a single topic. Because data briefs are not comprehensive studies, we limit our discussion of findings to summarizing the key results.

This data brief reflects the interpretations of the author. Although the Consortium's Steering Committee provided technical advice and reviewed an earlier version of this brief, no formal endorsement by these individuals, their organizations, or the full Consortium should be assumed.

## Steering Committee

Victoria Chou, Co-Chair
University of Illinois at Chicago
James H. Lewis, Co-Chair Roosevelt University
Institutional Members Chicago Teachers Union Deborah Lynch Walsh

Chicago Principals and Administrators Association Beverly Tunney
Chicago Public Schools
Christy Carter for the Chicago Board of Education

Olivia Watkins for the Chief Executive O fficer

Philip H ansen Accountability Office Illinois State Board of Education Connie Wise for the Superintendent

Individual Members
John Ayers
Leadership for Quality Education
Gina Burkhardt
North Central Regional Educational Laboratory
Michael E. Carl
N ortheastern Illinois University
Louis M. Gomez N orthwestern University

Anne C. Hallett Cross City Campaign for U rban School Reform
G. Alfred Hess, Jr.
N orthwestern University

Rachel W. Lindsey Chicago State University

George Lowery
Roosevelt University

## Angela Perez Miller

DePaul U niversity
D onald R. Moore
Designs for Change
Sharon Ransom
University of Illinois at Chicago

## Barbara A. Sizemore

DePaul University
James Spillane
N orthwestern University

## Linda S. Tafel

N ational-LouisU niversity

# Consortium on Chicago School Research 

## Mission

TheC onsortium on Chicago School Research is an independent federation of Chicago area organizations that conducts research on ways to improve Chicago's public schools and assess the progress of school improvement and reform. Formed in 1990, it is a multipartisan organization that includes faculty from area universities, leadership from the Chicago Public Schools, the Chicago Teachers Union, the C hicago Principals and Administrators Association, education advocacy groups, the Illinois State Board of Education, and theN orth Central Regional Educational Laboratory, as well as other key civic and professional leaders.

TheC onsortium does not argue a particular policy position. R ather, it believes that good policy is most likely to result from a genuine competition of ideas informed by the best evidence that can be obtained.

## Directors

Anthony S. Bryk Melissa Roderick
University of Chicago University of Chicago
John Q. Easton Penny Bender Sebring
Consortium on Chicago University of Chicago
School Research
Albert L. Bennett
Roosevelt University
Sarah-Kay McDonald
Consortium on Chicago
School Research


Consortium on Chicago School Research 1313 East 60th Street, Chicago, IL 60637
773-702-3364 fax -773-702-2010
www.consortium-chicago.org


[^0]:    Note: Scores in 1995, 1996, 1999, 2000, and 2001 are adjusted to simulate the bilingual education inclusion rules of 1997 and 1998. In 1999, 2000, and 2001, students in their fourth year of bilingual education have been added back into the totals. In 1995 and 1996, students with fewer than three years of bilingual education have been removed.

